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A simple computational algorithm is proposed for visualization of time-averaged moiré fringes. Time-

averaging numerical techniques can be exploited for the construction of a cryptographic hash function.

It appears that visualization of values of that hash function at continuously increasing amplitude of

harmonic oscillation can produce interesting optical patterns. Chaotic and visually intriguing patterns

are observed when the input of the hash function is selected as an array of random numbers uniformly

distributed in the interval [0;1]. Such stochastic moiré gratings produce aesthetically beautiful pictures

and can be used to explore aspects of the quality of a random number generator.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Geometric moiré [1,2] patterns involve classical in-plane whole
field non-destructive optical experimental techniques based on
analysis of visual patterns produced by superposition of two
regular gratings that geometrically interfere. Examples of gratings
are equispaced parallel lines, concentric circles and arrays of dots.
These gratings can be superposed by double-exposure photo-
graphy, by reflection, by shadowing, or by direct contact [3,4].
Moiré patterns are used to measure variables such as displace-
ments, rotations, curvature, and strain throughout the viewed
area. In-plane moiré is typically conducted with gratings of
equispaced, parallel lines [2,3].

We will concentrate only on a one-dimensional example.
Moiré grating on the surface of a one-dimensional structure in the
state of equilibrium can be interpreted as a periodic variation of
black and white colors:
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where x is the longitudinal coordinate; M1 is the grayscale level of
the surface at a point x; l is the pitch of the grating. A numerical
value 0 of the function in the Eq. (1) corresponds to the black
color; 1—to the white color; all intermediate values—to grayscale
levels.

If the structure is deflected from the state of equilibrium by u,
then the one-dimensional grating in the deformed state can be
interpreted as follows:
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Additive superposition [5] of the original and the deformed
gratings yields:
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If the deflection u is now varied continuously, the effect of
beatings will occur. Fringes will form at the centers of the beatings
where

cos
pu

l

� �
¼ 0. (4)

The Eq. (4) can be used to construct an explicit relationship between
the fringe order, the deflection u and the pitch of the grating [1,2].

Double-exposure geometric moiré techniques can be extended
to time-averaging geometric moiré methods when the moiré
grating is formed on a surface of an elastic oscillating structure
and time-averaging techniques are used for the registration of
time-averaged patterns of fringes [5]. Time-averaging moiré is
exploited in numerous engineering applications involving time-
average projection, reflection, geometric moiré techniques [6–8].
Again, we will use a one-dimensional model to illustrate the
formation of time-averaged fringes. We assume that the deflection
from the state of equilibrium varies in time:

uðx; tÞ ¼ a sin ðot þjÞ, (5)

where o is the circular frequency, j is the phase and a is the
amplitude of oscillation. Then time-averaged grayscale level can
be expressed in the following form [5,8]:
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where T is an exposure time; J0 is the zero order Bessel function of
the first kind. Time-averaged fringes will form at such amplitudes
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a where J0(2p/la) ¼ 0. Now, the relationship between the fringe
order, the deformation amplitude a and the pitch of the grating
takes the following form:

2p
l

ai ¼ ri, (7)

where ri denotes i-th root of the zero order Bessel function of the
first kind; ai is the amplitude of oscillation at the center of the i-th
fringe; and the fringe order is determined using automatic,
semiautomatic or even manual fringe counting techniques [1]
applied to an experimental pattern of fringes.

2. Visualization of time-averaged moiré fringes

Realistic visualization of optical fringes in digital environments
is a demanding computational task. It usually involves a finite
element dynamical model of an elastic deformable body, a
geometric model of an optical setup comprising a virtual
projection plane, a source of illumination and a point of
observation, physical properties of the surface of the analyzed
body, and finally, a digital model of interference effects taking
place in the system under investigation [9,10].

We assume that the field of dynamic displacements does
not depend on x (Eq. (5)). Thus we will use previously described
one-dimensional model instead of building a finite element
model of an elastic deformable structure. Such an approach
considerably simplifies computations but still allows illustrating
the formation of double exposure and time-averaged moiré
fringes. Moreover, one can exploit standard interpolation and
visualization tools available in Matlab what makes the process
even simpler. Code 1 shows example computer programming
pseudocode.
CODE 1
% Plots time-averaged moire fringes
clear all

%
 remove all variables, globals, functions
%———————————————————————————————————————— %
 CONSTRUCTION OF THE MOIRE GRATING

step ¼ 0.01; %
 define the step of the mesh

MESH ¼ 0:step:10; %
 form the mesh for the grating

lamda ¼ 0.2; %
 define the pitch of the grating

MOIRE ¼ 0.5+0.5*cos(2*pi*MESH/lamda); %
 form the grayscale moire grating
%———————————————————————————————————————— %
 PREPARATIONS FOR AVERAGING IN TIME

amax ¼ 1; %
 define the maximum amplitude of oscillations

namp ¼ 100; %
 define the number of amplitude increments

astep ¼ amax/step; %
 find how many steps fit into max amplitude

X ¼ �amax:step:10+amax; %
 define the observation window

lengthx ¼ length(X); %
 find the length of vector X

ntime ¼ 128; %
 define the number of iterations for
%
 averaging in time
%———————————————————————————————————————— %
 AMPLITUDE LOOP

for i ¼ 1:namp %
a ¼ amax*(i-1)/namp; %
 calculate the current amplitude

A(i) ¼ a; %
 save the value of the current amplitude

SUM ¼ zeros(size(X)); %
 clear averaged grayscale levels
%———————————————————————————————————————— %
 AVERAGING LOOP

for j ¼ 1:ntime %
t ¼ 2*pi*(j-1)/ntime; %
 calculate the current time

IMG ¼ ones(size(X)); %
 the image is set to white color

delta ¼ a*cos(t)/step; %
 calculate the discrete deflection

IMG(round(astep-delta)+1: y %
 the deflected moire grating y
round(lengthx-astep-delta))y %
 is fitted into y
¼MOIRE; %
 the current instantaneous image

SUM ¼ SUM+IMG; %
 add the current image
end %
 end of the AVERAGING LOOP

SUM ¼ SUM/ntime; %
 calculate averaged grayscale levels

M(:,i) ¼ SUM; %
 save the currently averaged image
end %
 end of the AMPLITUDE LOOP
%———————————————————————————————————————— %
 VISUALIZATION

pcolor(A,X,M) %
 plot a colored parametric surface
%
 set the view to directly above

shading interp %
 interpolate the shading

colormap gray %
 set the grayscale colormap
The execution of this script produces a paradigm pattern of
fringes resembling a time-averaged image of an elastic structure
performing in-plane oscillations according to its first eigenmode
with a horizontal moiré grating plotted on its surface (Fig. 1).
Centers of time-averaged fringes are located at such amplitudes
where the Eq. (7) holds true.
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Fig. 1. A pattern of time-averaged fringes produced by the harmonic moiré grating.

Fig. 2. A pattern of double exposure fringes produced by the harmonic moiré

grating.

Fig. 3. A time-averaged image produced by a set of random numbers uniformly

distributed in the interval [0;1].

Fig. 4. A chaotic pattern of fringes produced from the time-averaged image by

applying contrast enhancement techniques.
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Fringes mimicking the experimental double exposure moiré
technique can be plotted if the parameter ntime is changed from
128 to 2 (Fig. 2). Though the grayscale level at fringe centerlines is
again 0.5, the variation of the grayscale level in regions between
higher order fringes is not limited by the zero order Bessel
function of the first kind (Eq. (3)). This is a nice example
illustrating the necessity of contrast enhancement techniques
for time-averaged moiré images.
3. Chaotic patterns produced by stochastic moiré gratings

An interesting time-averaged image is produced (Fig. 3) when
the moiré grating is formed as a set of random numbers uniformly
distributed in the interval [0;1]. This can be easily implemented
into the script by changing the last two lines in the program
section ‘‘CONSTRUCTION OF MOIRE GRATING’’ to:
for i ¼ 1:length(MESH)
MOIRE(i) ¼ rand; % form the grayscale moire grating
end
Such time-averaging of stochastic data is exploited for con-
struction of a new class of hash functions [11]. The computational
process embedded into the hash function [11] can be described
mathematically by the following equation:

HsFðxÞ ¼ F�1
ðJ0ðszÞF ~FðxÞÞ þ 1

2, (8)
where F(x) is a grayscale function; 0pF(x)p1; Hs is a time-
averaging operator; s is the amplitude of harmonic oscillations;
~FðxÞ ¼ FðxÞ � 0:5; F is the Fourrier transform; F�1 is the inverse
Fourrier transform; z is the coordinate in the frequency domain.

The kernel of the operator described by the Eq. (8) is irregular
because calculation of F(x) (when HsF(x) is given) involves
following computations:

~FðxÞ ¼ F�1 1

J0ðszÞ
F HsFðxÞ �

1

2
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. (9)

But the zero order Bessel function of the first kind has multiple
roots; therefore multiple divisions by zero occur in the process of
the reconstruction of the original image. In other words, the
inverse problem is ill-posed. Aiming at full recovery of the
information results in unstable solutions due to the fact that the
reconstructed image is very sensitive to inevitable measurement
errors. In other words, slightly different data would produce a
significantly different image.

Clearly, the object of this paper is not to concentrate on the
details and properties of the hash function, but to present visually
attractive chaotic fringes produced in the process of time-
averaging of stochastic moiré gratings. In order to visualize this
pattern of chaotic fringes we use contrast enhancement techni-
ques mentioned in the previous section. The main idea of these
contrast enhancement techniques is to map grayscale levels
around 0.5 to the black color, and all other levels—to the white
color. We use a hyperbolic tangent mapping function [12] to
produce a contrast enhanced image presented in Fig. 4.
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It is shown in [11] that for any grayscale function

lim
s!1

HsFðxÞ ¼ OðxÞ, (10)

where O(x) is the zero grayscale function; O(x) ¼ 0.5 for all x. In
other words, a contrast enhanced image will eventually become
black at sufficiently large s. Such an effect is observed in Fig. 4.
Nevertheless, the original set of random numbers undergoes
extensive transformations before converging to 0.5. A unique
fingerprint is produced in the process of these transformations.
That fingerprint (besides an aesthetic value) can be used to
explore aspects of the quality of a random number generator used
to construct the original set of random numbers. Wide white
streaks in Fig. 4 are a definite indicator that random numbers
were not uniformly distributed in some parts of the original
grayscale vector.

Graphical methods for assessing the quality of random number
sequences are usually called Marsaglia plots [13]. As Vattulainen
et al. showed some years ago, a carefully chosen 2-D test can be very
revealing [14]. Of course, additional research needs to be conducted
to more fully understand and assess the methods presented in this
paper, and we look forward to hearing from readers who have
explored the approach in a variety of experiments.
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